PROCEEDINGS OF
THE IRES
64th INTERNATIONAL CONFERENCE
Oxford, United Kingdom

Organized by

Corporate Address
Institute of Research and Journals
Plot No- 161, Dharma Vihar, Khandagiri, Bhubaneswar, Odisha, India
Mail: info@theires.org, www.iraj.in
About IRAJ Research Forum (IRF):

The **IRAJ Research Forum** is an International non-profit academic association under ‘Peoples Empowerment Trust’ with the stated goals of promoting cooperation among scientists, defending scientific freedom, encouraging scientific responsibility, and supporting scientific education and science outreach for the betterment of all humanity. It is the one of the world’s largest and most prestigious general scientific society.

Objective of IRF:

- To provide a world class platform to researchers to share the research findings by organizing International/National Conferences.
- To use the research output of the conference in the classroom for the benefits of the students.
- To encourage researchers to identify significant research issues in identified areas, in the field of Science, Engineering, Technology and Management.
- To help dissemination of their work through publications in a journal or in the form of conference proceedings or books.
- To help them in getting feedback on their research work for improving the same and making them more relevant and meaningful, through collective efforts.
- To encourage regional and international communication and collaboration; promote professional interaction and lifelong learning; recognize outstanding contributions of individuals and organizations; encourage scholar researchers to pursue studies and careers in circuit branches and its applications.
- To set up, establish, maintain and manage centers of excellence for the study of/on related subjects and discipline and also to run self supporting projects for the benefit of needy persons, irrespective of their caste, creed or religion.

About TheIRES:

The Institute of Research Engineers and Scientists (TheIRES) is a **non-profit organization** that promotes the Engineering and Technology, related latest developments and issues to be discussed and experimented through interactions amongst the researchers and academician across the globe at a common platform in association with The IIER, Academics World & ISER.
Conference Committee

Program Chair:

Dr. P. Suresh
M.E, Ph.D. Professor and Controller of Examinations,
Karpagam College of Engineering,
Coimbatore, India

Weera Chotithammaporn
SuanSunandhaRajabhat University,
Thailand

Somkiat Korbuakaew
Suan Sunandha Rajabhat University,
Thailand

Somsakul Jerasilp
Suan Sunandha Rajabhat University,
Thailand

Conference Manager:
Mr. Bijan Kumar Barik
Mob: +91-9776047497

Conference Convener:
Miss. Priyanka Yadav, TheIRES
Mob: +91-7205807246

Publication and Distribution Head:
Mr. Manas Ranjan Prusty, IRAJ, India

INTERNATIONAL ADVISORY MEMBERS

Prof. Goodarz Ahmadi,
Professor, Mechanical and Aeronautical Engineering,
Clarkson University, USA

Dr. Chi Hieu Le,
Senior Lecturer, University of Greenwich. Kent ME4 4TB.
United Kingdom

PROF. (ER.) Anand Nayyar
Department of Computer Applications & I.T. KCL Institute of Management and Technology, Jalandhar
G.T. Road, Jalandhar-144001, Punjab, India.

Prof. R. M. Khaire,
Professor, Dept. Of Elex. and Telecommunication,
B. V University, India

Dr. P. Suresh,
Professor, Karpagam College of Engineering, Coimbatore, Tamilnadu

Mark Leeson
Associate Professor (Reader)
Area of Expertise: nanoscale communications,
evolutionary algorithms, network coding and communication systems

Dr. P. K. Agarwal
Professor, Deptt. of Civil Engineering, MANIT Bhopal, Ph. D: IIT Kanpur
M.E: Civil Engg.IIT Roorkee, Membership: Indian Road Congress (IRC), Institute of Urban Transport (IUT)

Shahriar Shahbazpanahi
Islamic Azad University, Department of Civil Engineering, Sanandaj, Kurdistan, Iran,
PhD (Structural Engineering),
University Putra Malaysia, Malaysia, 2009-Present
Harun Bin Sarip
Head of Research and InnovationDept, UniKL-MICET
Doctorate: Université de La Rochelle, France, Member:
International Society of Pharmaceutical Engineer, Singapore Chapter

Dr. Bilal Ali Yaseen Al-Nassar
The World Islamic Sciences and Education University (WISE)
Faculty of Business and Finance
Department of Management, Information System (MIS), Amman- Jordan

Dr. Md. Al-Amin Bhuiyan
Associate Professor
Dept. of Computer Engineering
King Faisal University
Al Ahssa 31982, Saudi Arabia

Prof. (Er.) Anand nayyar
Department of Computer Applications & I.T.
KCL Institute of Management and Technology, Jalandhar
G.T. Road, Jalandhar-144001
Punjab, India

Prof. Aleksandr Cariow
institution or Company: West Pomeranian University of Technology, Szczecin

Dr. P. K. Agarwal
Professor, Dept. of Civil Engineering, MANIT Bhopal
Ph. D: IIT Kanpur
M.E: Civil Engg.IIT Roorkee, Membership: Indian Road Congress (IRC), Institute of Urban Transport (IUT)

Dr. VPS Naidu
Principal Scientist & Assoc. Prof., MSDF Lab, FMCD
CSIR - National Aerospace Laboratories, Bangalore, India

Mr. P. Sita Rama Reddy
Chief Scientist, Mineral Processing Department, CSIR - Institute of Minerals & Materials Technology
Bhubaneswar, India, M.Tech. (Chem. Engg., IIT, KGP)

Dr. P.C.Srikanth,
Professor & Head, E&C Dept, Malnad College of Engineering, Karnataka
Senior Member IEEE, Secretary IEEE Photonics Society,
M.Tech: IIT, Kanpur, Ph.D: In IISe Photonics lab

Prof. Lalit Kumar Awasthi,
Professor, Department of Computer Science & Engineering
National Institute of Technology(NIT-Hamirpur),
PhD, IIT, Roorkee, M. Tech, IIT, Delhi

Dr. Chandra Mohan V.P.
Assistant Professor, Dept. of Mech. Engg., NIT Warangal,
Warangal, Ph.D : Indian Institute of Technology(IIT),Delhi
M.B.A: Alagappa University

Prof. I.Suneetha,
Associate Professor, Dept. of ECE, AITS, Tirupati, India

Dr.s. Chandra Mohan Reddy,
Assistant Professor (SG) & Head, Dept. of Electronics & Communication Engineering, JNTUA College of Engineering, Pulivendula,
Ph.D,J.N.T. University Anantapur, Anantaparamu

Gurudatt Anil Kulkarni,
I/C HOD E&TC Department, MARATHWADA MITRA MANDAL’S POLYTECHNIC

★★★
<table>
<thead>
<tr>
<th>Sl No</th>
<th>Titles and Authors</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>Traditionals Bills of Lading V. Electronic Bills Of Ladings: Pros and Cons and The Way Forward</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Kamal Alawamleh</td>
<td></td>
</tr>
<tr>
<td>02.</td>
<td>Solar Water Pumps For Agriculture</td>
<td>4-8</td>
</tr>
<tr>
<td></td>
<td>Chonmapat Torasa, Nichanant Sersri</td>
<td></td>
</tr>
<tr>
<td>03.</td>
<td>The Impact on The Community Using Biogas Technology In The Community</td>
<td>9-12</td>
</tr>
<tr>
<td></td>
<td>Nuttida Chanhom, Prungsak Utaphut, Tanaporn Pantuprecharat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amon Lasomboon, Witthaya Mekhum, Chananchida Yuktirat</td>
<td></td>
</tr>
<tr>
<td>05.</td>
<td>Rooftop Solar PV Systems</td>
<td>19-22</td>
</tr>
<tr>
<td></td>
<td>Ratchasak Sannok</td>
<td></td>
</tr>
<tr>
<td>06.</td>
<td>The Sustainable Development Of Community Product And Packaging By Creative Economy For Anghong Province</td>
<td>23-26</td>
</tr>
<tr>
<td></td>
<td>Suraphan Rattanavadi</td>
<td></td>
</tr>
<tr>
<td>07.</td>
<td>Integrating Relationship Of The Five Elements In Creating Product Design Of Interior Decorative Souvenirs</td>
<td>27-30</td>
</tr>
<tr>
<td></td>
<td>Somsakul Jerasilp, Jong Boonpracha</td>
<td></td>
</tr>
<tr>
<td>08.</td>
<td>Study Of Product Design: Perception Of Product Users In Functionality And Ability Of Products To Control Calories From The Elders’ Meals</td>
<td>31-33</td>
</tr>
<tr>
<td></td>
<td>Patinya Sang-Aroon, Pakinsittiloetprasit</td>
<td></td>
</tr>
<tr>
<td>09.</td>
<td>The Study Of South East Asian Carbon-Tapping Techniques And Kiln Design On Contemporary</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Jiravut Doungin</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Factors Affecting The Learning Achievement Motivation Of 4th Year Students In Mathematics, Faculty Of Education, Suan Sunandha Rajabhat University</td>
<td>35-37</td>
</tr>
<tr>
<td></td>
<td>Tanawat Srisiriwat</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Differentiation Of Aroma And Mood On Packing Design</td>
<td>38-40</td>
</tr>
<tr>
<td></td>
<td>Preechaya Krukaset</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Design Guidelines For Mascot Of Northeast Of Thailand</td>
<td>41-43</td>
</tr>
<tr>
<td></td>
<td>Supatra Lookraks</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>15.</td>
<td>Effect Of Aquaerobic Exercise On Body Weight Of The Overweight During Menopause</td>
<td>Wadee Pramkratok</td>
</tr>
<tr>
<td>16.</td>
<td>The Study Of Exercise Behavior Of Suan Sunandha Rajabhat University</td>
<td>Jarosporn Pussakham</td>
</tr>
<tr>
<td>17.</td>
<td>The Effect Of Combined Exercise And Meditation On Physical Fitness And Autonomic Nervous System</td>
<td>Thanadej Posri</td>
</tr>
<tr>
<td>18.</td>
<td>Thai Wisdom Regarding Herbal Medication In Prevention, Care And Rehabilitation In Muay Thai (Thai Boxing) Fighter’s Physical Body</td>
<td>Vichit Suvonnopast</td>
</tr>
<tr>
<td>19.</td>
<td>The Study Of 21st Century Classroom Requirement To Accomodate With Design Lighting In State Classroom With “RELUX”</td>
<td>Jitravadee Roongin Kunkar, Piti Anontapant, Pongpol Jaithiang</td>
</tr>
<tr>
<td>21.</td>
<td>Quality Analysis On Vegetable Oil-Based Offset Printing Ink</td>
<td>Krairop Charoensopa</td>
</tr>
<tr>
<td>22.</td>
<td>Study Of Professional Need For Printing Technician Personnel As Required By Business Organizations In Bangkok Thailand</td>
<td>Wat Ploysri</td>
</tr>
<tr>
<td>23.</td>
<td>Problems Within Printing Business Operations In Thailand</td>
<td>Apinya Mungaomklang</td>
</tr>
<tr>
<td>24.</td>
<td>Development Competency-Based Training Course In Paper Packaging Design For Designer In Bangkok, Thailand</td>
<td>Suppawan Pankohlerng</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>25.</td>
<td>The Readiness Of The Suan Sunandha Rajabhat University Education Personnel For The Edpex Quality Assurance</td>
<td>Somkiat Korbuakaew</td>
</tr>
<tr>
<td>26.</td>
<td>Building Trust And Globally Promoting Bangkhoveri Indigenous Knowledge Using Information Technology And Advanced Media</td>
<td>Kwanruan Rusmee</td>
</tr>
<tr>
<td>27.</td>
<td>The Application Of Data Mining Techniques As A Diagnostic Tool In Forecasting The Learning Ability Of Students Through Electronic Media</td>
<td>Sirilak Ketchaya</td>
</tr>
<tr>
<td>28.</td>
<td>The Efficiency Of Using Mobile Application For Encourage Culture Tourism Of Sculpture And Architecture 9 Temples In Bangkok, Thailand</td>
<td>Kittikhun Meethongjan, Nisanart Tachpetpai, Narisara Kaewsakul</td>
</tr>
<tr>
<td>29.</td>
<td>Managing Strategic Alliances Of Thai Professional Football Clubs With Their Foreign Counterparts</td>
<td>Komkrit Rattamanee</td>
</tr>
<tr>
<td>30.</td>
<td>A Case Study Of The Contention Between Government And Community In “Mahakarn Fort” Conservation Project For Tourism</td>
<td>Supakit Mulpramook</td>
</tr>
<tr>
<td>31.</td>
<td>Creating The Viewpoint Map To Support Tourism In Taling – Chan District, Bangkok</td>
<td>Kunyaphat Thanakunwatthiro</td>
</tr>
<tr>
<td>32.</td>
<td>Geographic Information Tourism System With Community Participation In Taling – Chan District, Bangkok</td>
<td>Morakot Worachairungreung</td>
</tr>
</tbody>
</table>

★★★
EDITORIAL

It is my proud privilege to welcome you all to the TheIRES International Conference at Oxford, United Kingdom. I am happy to see the papers from all part of the world and some of the best paper published in this proceedings. This proceeding brings out the various Research papers from diverse areas of Science, Engineering, Technology and Management. This platform is intended to provide a platform for researchers, educators and professionals to present their discoveries and innovative practice and to explore future trends and applications in the field Science and Engineering. However, this conference will also provide a forum for dissemination of knowledge on both theoretical and applied research on the above said area with an ultimate aim to bridge the gap between these coherent disciplines of knowledge. Thus the forum accelerates the trend of development of technology for next generation. Our goal is to make the Conference proceedings useful and interesting to audiences involved in research in these areas, as well as to those involved in design, implementation and operation, to achieve the goal.

I once again give thanks to the Institute of Research and Journals, TheIIER, TheIRES & University of Management and Technology (Sialkot) for organizing this event in Oxford, United Kingdom. I am sure the contributions by the authors shall add value to the research community. I also thank all the International Advisory members and Reviewers for making this event a Successful one.

Editor-In-Chief

Dr. P. Suresh
M.E, Ph.D. Professor and Controller of Examinations,
Karpagam College of Engineering,
Coimbatore, India
THE APPLICATION OF DATA MINING TECHNIQUES AS A DIAGNOSTIC TOOL IN FORECASTING THE LEARNING ABILITY OF STUDENTS THROUGH ELECTRONIC MEDIA

SIRILAK KETCHAYA
Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok Thailand
Email: sirilak.ke@ssru.ac.th

Abstract- This research aims to cast a model developed by the Artificial Neural Network (ANN) in forecasting the learning ability of students through electronic media in the Suan Sunandha Rajabhat University. The neural network technique (Artificial Neural Networks - ANN) is developed with a view to support student by focusing on student and allow student to select the best compatible learning method in both classroom and electronic media contexts. The results show that the most accurate model in this study is the Class-Validation 100 Folds model, accounted for 94.46% of accuracy. This is because the segmented information is divided into 100 parts. Those 100 parts are alternately employed to teach and test which provide more accuracy that other models.

Index Terms—Artificial Neural Network, Classification, Students.

I. INTRODUCTION

Currently, Suan Sunandha Rajabhat University (SSRU) has organized the curriculum to enforce all undergraduate students to take the Information Technology subject, which is part of the general education (GE). Each class is taught by teachers who are competent in information technology principle. It is a 3 hours class per session which clearly demonstrate the time constraint for the students who might not have sufficient time to clarify their understanding. In addition, the university might not be able to offers an adequate number of teachers to accommodate all students thoroughly.

With the foregoing background, the idea to develop a diagnostic tool for screening and selecting student is emerged with a view to encourage students to choose the appropriate type of class that fit to their learning capability. It was found that most of the students focus on self-learning approach. This is because they mostly believe that they are effective leaner. Moreover, it was found that electronic media is employed to seek for more information and review the knowledge gained during the class. This implies that the usage of electronic media will have a significant influence on self-learning behavior. With the appropriated screening system, students will be able to learn and review knowledge at their own convenience and more often. This also assists the university to arrange the appropriate ration between classroom and number of registered student to reduce the university cost (e.g. lecturer cost, overtime cost for administrative staff, and any other supportive cost). This will also lead to the decrease in tuition fee which clearly demonstrate the benefit to the student side.

This study employs the online examination results of the undergraduate students in the academic year of 2011, Grade Point Average (GPA), faculty, scholarship condition, educational level, working condition, and wages as variables to develop a set of rule base. The grades in the information technology course during the academic year of 2010 and 2013 are the forecasted results. WEKA program is employed to develop a data mining. The ANN technique is used to stimulate the screening model that can be applied to the new student. The rationale behind selecting the ANN technique is that ANN works as multi-layered process. The model, therefore, makes it possible to create an accurate and comprehensive screening criterion. In addition, it assists researcher to better choose the model that yields the most accurate and select the most appropriate information to analyze. This paper is organized as follows: Section I provides general introduction to the study; Section II describes the related work concerned this research. Section III demonstrated the methodologies used in this study. The experiments and results are shown in Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

At present, data mining has been frequently applied in several contexts, for instance product marketing in department store, financial and banking activity and others. Recently, the usage of this technique is extended to the education context, with a view to investigate various type of information, such as student’s personal information (e.g. age, gender, education profile, and GPA). In the past, it was found that there is a limited usage of this data. The data mining techniques that are frequency used in the field of education are the Association Rule Discovery, the Data Classification, and the Data Prediction. Such techniques are often applied in data mining for educational context. The decision tree is also one of the most popular tools for data classification in data mining. It has compiled a relation data set, including several “Attributes” which will sum up to be “Instance” within a data set. This is applied to develop a screening model to select the best efficient model to achieve the
result which is the Association Rule Discovery. This can be further applied in various ways, for instance forecasting data, identifying the data relationship, as well as supporting the decision making in education context (e.g. enrollment method and identifying the pathway to graduate). The decision tree technique can be moreover integrated with other techniques, for instance the Genetic Algorithm (GA), with a view to improve the accuracy of the result compare with applying the decision tree alone.

The decision tree technique is considered as the most popular technique. Most of the researchers that employ classification technique will select decision tree technique in their research for both analytical purpose and comparison purpose. This is due to the decision tree technique provides the most accurate result, easy to understand, highly flexible, and suitable for data mining, especially for classification technique. Meanwhile, the ANN is developed and validated in several researches. ANN focuses on the identification, screening, and forecasting. The operation process behind this technique is the layers of node, which is effective in classification task, as it is flexible and has limited errors, compared to other techniques. Such technique becomes very popular in Data Mining context. It is considered as a highly effective technique which is therefore suitable to employ in academic research.

III. METHODOLOGY

In this section, we demonstrate the Multilayer perceptron neural network applied in this research.

A. Multilayer perceptron Network

The artificial neural network (ANN) or neural network in short, is inspired by simulating the function of a human brain. A neural network can be used to represent a nonlinear mapping between input and output vectors. Neural networks are among the popular signal-processing technologies. In engineering, neural network serves two important functions, namely pattern classifiers and nonlinear adaptive filters [1], [2]. A general network consists of a layered architecture, an input layer, one or more hidden layers and an output layer [3].

The Multilayer perceptron (MLP) is an example of an artificial neural network that is used extensively to solve a number of different problems, including pattern recognition and interpolation [4], [5]. Each layer is composed of neurons, which are interconnected with each other by weights. In each neuron, a specific mathematical function called the activation function accepts input from previous layers and generates output for the next layer. In the experiment, the activation function used is the hyperbolic tangent sigmoid transfer function [3] which is defined as in equation (1):

\[f(n) = \frac{1-e^{2s}}{1+e^{2s}} \]

where \(s_i = \sum_{i=1}^{n} w_ix_i \), in which are weights and are input values.

The MLP is trained using the Levenberg–Marquardt technique as this technique is more powerful than the conventional gradient descent techniques [1].

The Levenberg-Marquardt (LM) algorithm [6] is the most widely used optimization algorithm. It outperforms simple gradient descent and other conjugate gradient methods in a wide variety of problems. If a function \(V(x) \) is to be minimized with respect to the parameter vector \(x \), then Newton’s method would be:

\[\Delta x = -[\nabla^2 V(x)]^{-1} \nabla V(x) \]

where \(\nabla^2 V(x) \) is the Hessian matrix and \(\nabla V(x) \) is the gradient. If \(V(x) \) reads:

\[v(x) = \sum_{i=1}^{N} e_i^2(x) \]

\[\nabla_v(x) = J^T(x)e(x) \]

\[\nabla_V(x) = J^T(x)e(x) \]

where \(J(x) \) is the Jacobian matrix

\[J(x) = \begin{bmatrix} \frac{\partial e_1(x)}{\partial x_1} & \frac{\partial e_1(x)}{\partial x_2} & \ldots & \frac{\partial e_1(x)}{\partial x_N} \\ \frac{\partial e_2(x)}{\partial x_1} & \frac{\partial e_2(x)}{\partial x_2} & \ldots & \frac{\partial e_2(x)}{\partial x_N} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial e_N(x)}{\partial x_1} & \frac{\partial e_N(x)}{\partial x_2} & \ldots & \frac{\partial e_N(x)}{\partial x_N} \end{bmatrix} \]

(6)

And

\[s(x) = \sum_{i=1}^{N} e_i^2(x) \]

(7)

For the Gauss-Newton method it is assumed that \(s(x) \approx 0 \), and equation (2) becomes:

\[\Delta x = [J^T(x)J(x)]^{-1} J^T(x)e(x) \]

(8)
The Levenberg-Marquardt modification to the Gauss-Newton method is:

$$\Delta x = [J^T(x)J(x) + \mu I]^{-1} J^T(x)e(x) \quad (9)$$

The parameter μ is multiplied by some factor (β) whenever a step would result in an increased $V(x)$.

When a step reduces $V(x)$, μ is divided by β. When the scalar μ is very large the Levenberg-Marquardt algorithm approximates the steepest descent method. However, when μ is small, it is the same as the Gauss-Newton method. Since the Gauss-Newton method converges faster and more accurately towards an error minimum, the goal is to shift towards the Gauss-Newton method as quickly as possible. The value of μ is decreased after each step unless the change in error is positive; i.e. the error increases. For the neural network mapping problem, the terms in the Jacobian matrix can be computed by a simple modification to the back-propagation algorithm [7].

IV. EXPERIMENT AND RESULTS

B. Classification of data

The research methodology for designing and developing the screening model begins with the preparation of raw data as an input to WEKA program. Data includes student history, assignment score, attention score, Information technology subject’s grade, foundation test result of all undergraduate students of year 2010-2013, accounted for 31,066 students.

The data set includes 11 key factors, namely 1) result of the foundation knowledge of information technology exam, 2) grade point average in high school level (or equivalent), 3) faculty, 4), Scholarship status, 5) Educational level, 6) father’s wage, 7) mother’s wage, 8), personal disease, 9) health condition, 10) Marital status of parent, 11) the attention score of Information Technology subject, 12) exam result of information technology subject, 13) overall result of information technology subject.

Those factors are used in model forecasting and model developing purposes. However, it is found that there are many missing data in the collected data. The researcher, therefore, applies the missing data reduction technique to overcome such shortfalls in all factors, except 1) exam result, 2) overall result, and 3) grade point average. This is because such data have a significant impact on the accuracy of the model and cannot be neglected.

The missing data is then replaced by using numeric data technique. For example, the average of father’s wage is lower than 12,500 baht per month. Such amount will replace all missing data in this category (i.e. in this study, 3,762 missing data are replaced). Similar to the father’s wage, the average amount of mother’s wage is lower than 12,500 baht per month. This amount replaces 3,525 missing data in this category. After replacing all missing data, there are 20,917 data remaining to be stored for comparison purpose. Then, for another technique (deleting missing data technique), the missing data is deleted. The remaining data accounts for 17,482 data set. This set of data is used for comparison purpose. Two set of prepared data are then tested in all the variables that are relevant to the overall accuracy. Comparison analysis between the replacing model and deleting model is carried out with a view to assess the impact on the accuracy of the result in each model. The output from this stage is used to select the appropriate data set to be modeling afterward. Then, model with the highest accuracy is used to screen students.

C. Result

The results of analyzing related factor using Neural Network technique by implementing Cross Validation 5 fold and Validation 10 fold show that all factors have significant impact on the accuracy of the model. When the missing data is neglected, the accuracy of the model is decreased. Therefore, to obtain the most accurate result, the model requires all related factors, as shown in table 1.

| Table 1. The analysis of related factor using Neural Network technique by comparing between Cross Validation 5 fold and Cross Validation 10 Folds |
|---|---|---|
| Factor | Accuracy (%) Cross Validation 5 Folds | Accuracy (%) Cross Validation 10 Folds |
| Overall | 92.14 | 93.76 |
| Result of foundation exam | 90.69 | 90.73 |
| High school GPA | 89.81 | 92.11 |
| Faculty | 88.47 | 89.34 |
| Scholarship condition | 91.69 | 93.56 |
| Educational level | 92.12 | 93.52 |
| Father’s wage | 91.68 | 93.59 |
| Mother’s wage | 91.90 | 93.39 |
| Personal disease | 92.11 | 93.52 |
| Health condition | 92.11 | 93.52 |
| Parent’s marriage status | 82.54 | 84.97 |
| Attention score | 91.69 | 93.56 |
| Assignment score | 92.11 | 93.52 |

The comparison results between replacing missing data and deleting missing data show that both has a significant impact on the accuracy of every model, accounted for an average of 0.477% which is statistically accepted, as shown in table 2.
The Application of Data Mining Techniques as a Diagnostic Tool in Forecasting The Learning Ability of Students Through Electronic Media

This study then uses the replacing missing data model to analyses, as it provides more accurate result, as shown in table 3 below.

Table 3. Model comparison using Neural Network Technique

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy of replacing missing data model (%)</th>
<th>Accuracy of deleting missing data model (%)</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Folds</td>
<td>92.14</td>
<td>92.32</td>
<td>0.18</td>
</tr>
<tr>
<td>10 Folds</td>
<td>93.76</td>
<td>93.60</td>
<td>0.16</td>
</tr>
<tr>
<td>100 Folds</td>
<td>94.46</td>
<td>94.13</td>
<td>0.33</td>
</tr>
<tr>
<td>10 %</td>
<td>89.98</td>
<td>90.87</td>
<td>0.89</td>
</tr>
<tr>
<td>20 %</td>
<td>92.12</td>
<td>91.24</td>
<td>0.88</td>
</tr>
<tr>
<td>66 %</td>
<td>92.15</td>
<td>92.90</td>
<td>0.75</td>
</tr>
<tr>
<td>Separate data of 80/20</td>
<td>93.06</td>
<td>92.91</td>
<td>0.15</td>
</tr>
</tbody>
</table>

The results show that the most accurate model using Neural Network technique is Cross Validation 100 Folds, accounted for 94.46%. Therefore, the Cross Validation 100 Folds is recommended to be employed in student screening process.

CONCLUSION

The model analysis using Neural Network technique shows that the Cross Validation 100 Folds provides the most accurate result, accounted for 94.46%. This is because the data set is classified into 100 layers before testing. Therefore, it provides in-depth analysis of the data set. However, there are still some suggestions according to this study, especially in the selection and collection factors. If the automatic approach is employed instead of manual approach in collecting data, the data will be more accurate. Because the data filled by people or filling equipment may create a mistake which will then lead to the decrease in accuracy of the model once the analysis is carried out. In addition, GPA, in which the research was divided into three levels, should be divided into more level. This will also lead to more accurate result. The replacing data technique will also only provide a slightly more accurate result compare with the deleting missing data technique. If one can investigate further in this issue and propose a better model to overcome such shortfall, the result would be much more accurate.

ACKNOWLEDGEMENTS

The authors would like to thank Suan Sunandha Rajabhat University to financially support this research. Thanks also to the Information Technology Center at Suan Sunandha Rajabhat University, for providing all data in this study.

REFERENCES